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Document Embedding: Centroid-Based Document Clustering Algorithms
A Persistent Challenge for Generative LLMs o
k-means (1970s) 0 o 9
Generative LLM research is thriving. d: Squared Euclidean distance ‘X " ° X ."‘
However, most-widely used document embedding models still minimization of total point-centroid distortion gt
rely on non-generative, bidirectional architectures like BERT. ‘@ /. ........... .
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<= pooling (e.g., mean) =p Information-Theoretic Clustering (2000s)
d: KL Divergence on V =vocabulary

Bag-of-Words representation of documents
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Why GPT embeddings underperform is well understood:
* Autoregressive: Cannot use right-to-left context
Non-stationary: pooling is ineffective ...

No effective fix exists yet. Generative Clustering (ours)

p(Y=w|X) = occurring freq. of word w in document

d: KL Div. on V* = word sequences, defined using a language model

Is there an alternative to embeddings for using ) B ,
generative LMs in document representation? p(Y=[wy, ..., w] | X) = generation prob. of [w;, ..., w;] from X

. Challenge 1: KL is intractable because of infinitely many possible [w;, ..., w]
YES! We propose a new appfoaCh for ClUSteflng- Challenge 2: Needs a computable form for centroids. t

Generative Clustering: Distortion Estimation through Regularized Importance Sampling

N a=0. 25/regU|a”zat'°n SESDEt) Vanilla importance samplinghasa = 1
1 - (p(yilx) p(yilx) - |
KL [p (Y |x) || p (Y | k)] ~ — : l()g Regularization greatly reduces variance
N ¢ (yl) [ (yl k) of the estimator, enhancing clustering
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Step 1. Sampling “queries” as Y Step 2. Estimate KLon ) Step 3. Solve for minimal total
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Clustering is performed

& & through atwo-step iteration
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doc2query models are

: : “queries”
pretrained on retrieval tasks (ez.’ 2200, algorithm akin to k-means.
See the paper for choice of ¢ =pylx) = plylk)
documents clusters
Comparison with Embedding Approaches Experiments
Clustering accuracies on four datasets
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 Embedding reformulated as a sampling problem (of ).
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 Everydimension is interpretable (by a query textin )).
* Precisionis controllable via size of Y (typically, 300). 20 I
* Potential adaptation via prompting (future work). 0 1 | 11 l 1 |
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More costly than conventional embedding approaches. Embedding (SBERT) + kmeans S GUE T ),

Effects of LLM choices & fine-tuning methods is yet to be GC achieves th? S of the art, excelling on all four

explored. (we used pre-trained doc2query without fine-tuning) datasets of varying sizes.

Showcased generative LMs’ potential for clustering.



